Accelerating DynEarthSol 3 D on tightly coupled CPU – GPU hetero -
نویسندگان
چکیده
DynEarthSol3D (Dynamic Earth Solver in Three Dimensions) is a flexible, open-source finite element solver that models the momentum balance and the heat transfer of elasto-visco-plastic material in the Lagrangian form using unstructured meshes. It provides a platform for the study of the long-term deformation of earth's lithosphere and various problems in civil and geotechnical engineering. However, the continuous computation and update of a very large mesh poses an intolerably high computational burden to developers and users in practice. For example, simulating a small input mesh containing around 3000 elements in 20 million time steps would take more than 10 days on a high-end desktop CPU. In this paper, we explore tightly coupled CPU–GPU heterogeneous processors to address the computing concern by leveraging their new features and developing hardware-architecture-aware optimizations. Our proposed key optimization techniques are three-fold: memory access pattern improvement, data transfer elimination and kernel launch overhead minimization. Experimental results show that our proposed implementation on a tightly coupled heterogeneous processor outperforms all other alternatives including traditional discrete GPU, quad-core CPU using OpenMP, and serial implementations by 67%, 50%, and 154% respectively even though the embedded GPU in the heterogeneous processor has significantly less number of cores than high-end discrete GPU. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملGPU-to-CPU Callbacks
We present GPU-to-CPU callbacks, a new mechanism and abstraction for GPUs that offers them more independence in a hetero-ion for GPUs that offers them more independence in a heterogeneous computing environment. Specifically, we provide a method for GPUs to issue callback requests to the CPU. These requests serve as a tool for ease-of-use, future proofing of code, and new functionality. We class...
متن کاملRevisiting Co-Processing for Hash Joins on the Coupled CPU-GPU Architecture
Query co-processing on graphics processors (GPUs) has become an effective means to improve the performance of main memory databases. However, the relatively low bandwidth and high latency of the PCI-e bus are usually bottleneck issues for co-processing. Recently, coupled CPU-GPU architectures have received a lot of attention, e.g. AMD APUs with the CPU and the GPU integrated into a single chip....
متن کاملPerformance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems
The Kernel Polynomial Method (KPM) is a wellestablished scheme in quantum physics and quantum chemistry to determine the eigenvalue density and spectral properties of large sparse matrices. In this work we demonstrate the high optimization potential and feasibility of peta-scale heterogeneous CPU-GPU implementations of the KPM. At the node level we show that it is possible to decouple the spars...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015